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and hence may not be good pointers to multidimensional structure. Consideration 
of bivariate properties and, in particular, the search for two directions with 
maximum curvature of regression (Cox and Small, 1978, Section 4.2) may be 
more promising. Certainly that gives quite direct diagnosis of both smooth 
nonlinearity and groups of points away from a broadly linear form. There is 
much scope for empirical and theoretical study. 
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Stanford University 

This work makes a great contribution by introducing the unifying notion that 
projections are interesting if they minimize indices of randomness. Before, there 
was a sea of isolated, seemingly disjoint, ideas. Now there is some order, and a 
way of connecting the applied success stories of projection pursuit to more 
classical statistics. This often suggests new research projects. 

One project involves notions of projection suitable for discrete data such as 
contingency tables and the analysis of preferences. I have introduced one such 
notion which involves projecting discrete data along "lines" of things like finite 
geometries. More formally, let X be a finite set (such as all binary k-tuples). Let 
f: X + W be a summary of the data (the proportion of students with a given 
pattern of correct/incorrect in a k item test). Let Y be a class of subsets of X. 
The Radon transform off at y E Y is the sum 

The class Y is a projection base if it partitions into yl, . . , y, where each yi is 
itself a partition of X. 

In the example, the sets yp = {x: xi = 01, and y; = (x: Xi = 11form a projection 
base. The Radon transform amounts to asking how many students answered the 
ith question correctly. 

If the sets y, are considered as lines in a geometry with points x, a projection 
base corresponds to the Euclidean axiom: for each point and line, there is a 
unique line through the point parallel to the given line. If X = WP, and Y is taken 
as all affine hyperplanes, the Radon transform gives ordinary projection. 

A theory can be built in this generality. Many of the basic results seem to go 
through: for most data sets, most projections are close to uniform. Thus projec- 
tions are interesting if they are far from uniform, and projection pursuit is forced 
on us. 

I have analyzed several sets of discrete data using this approach. It leads to 
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useful alternatives to log-linear models, multidimensional scaling or correspond- 
ence analysis. It sometimes points to structures that other analyses have missed. 

It seems likely that a form of projection pursuit regression can be developed 
for "taking out" structure as it is detected. For simple projection bases, such as 
the affine hyperplanes in the space of binary k-tuples, Fourier analysis shows 
that any function can be exactly written as a finite linear combination of 
nonlinear functions as in my work with Mehrdad Shahshahani. There is much 
interesting work to be done in studying properties of a few linear combinations, 
or in studying more general projection bases. 

John Tukey has suggested an alternative: mapping discrete data into a Euclid- 
'ean space in several ways (say using a weighted linear combination Ax of the 
binary vectors in the example) and then using projection pursuit. I wonder if 
Professor Huber sees other approaches to extending Bhe usefulness of projection 
pursuit to discrete data. 

The project sketched above is closely connected to my joint work with David 
Freedman. We showed that for data sets in "general position" in Rp,most 
projections would be close to Gaussian. Of course, the Gaussian distribution has 
maximum entropy for fixed scale, while the uniform distribution has maximum 
entropy for discrete data. In both cases, theory points to the need for projection 
pursuit in the following form: projections are "interesting" if they have minimum 
entropy among projections being considered. David Aldous has pointed to work 
by V. N. Sudakov that has some overlap with these considerations. 

Professor Huber mentions some calculations in connection with "grand tours": 
how many projections must be viewed to be sure of coming within a "squint 
angle" c of every view. I assume that the bounds follow from the following kind 
of reasoning: consider projecting onto "lines." Find the volume V(c) of a cap of 
radius e on the unit sphere Sp-lin p-dimensions (the whole sphere has volume 
1).Then at least N(e) = l/V(e) caps of radius V(c) are needed. Thus, at least 
N(c) projections are needed. Of course, these lower bounds are quite sloppy. To 
see the reason for my concern, Peter Matthews has used computations in Asimov 
(1985) to get upper and lower bounds on the number of planes needed to cover 
all two-dimensional views in p-dimensions. For example, in four dimensions, 
about 3258 planes must be used (see Table 1).If one plane is viewed per second, 
this would take about an hour. The upper bound for four dimensions is about 15 
hours. It would help to know where the numbers in the present paper come from. 

TABLE1 

Upper and lower bounds for the number of two-dimensional 

projections needed 

Lower bound Upper bound 

P = 3  66 263 
P - 4  3258 51684 
P - 5  143529 0.9 x lo7 
P = 6  0.6 X lo7 0.2 x 1O1O 
p = 7  0.2 x 109 0.2 x lo1* 
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Matthews (1985) has carried out many further computations in his Stanford 
Ph.D. thesis. He works in the context of a random walk on a group and derives 
the distribution until the walk hits (or is suitably close to) every point. This 
relates to projection pursuit via Asimov's scheme for the "grand tour." Asimov 
considers projections that "wiggle around" by small random rotations. His results 
agree with those reported by Huber in the following sense, it takes a long time 
to get close to most projections in high dimensions. Therefore, some form of 
projection pursuit is needed. On the other hand, once an interesting projection 
has been located, it seems useful to have some kind of grand tour to "wiggle 
around" in a neighborhood, to try to explore the features of the interesting 
projection. 
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In our discussion of this very stimulating paper, we will mostly confine our 
remarks to some of the general issues Huber raises in the introductory paragraphs. 

1. The curse of dimensionality. In paragraph four of the introduction, 
Huber writes ". . . the most exciting feature of P P  is that it is one of the very 
few multivariate methods able to bypass the 'curse of dimensionality' . . " 

Actually, Huber gives no precise definition of the "curse." Perhaps this is best, 
because there are several curses of dimensionality. Adverse effects of increasing 
dimension can include: less robustness, greater computational costs, worse mean 
squared error, and slower convergence to limiting distributions. 

In this instance, Huber is concerned with the effects of increasing dimension 
on the mean-squared-error of smoothers. He points out that kernel and related 


